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a b s t r a c t

This paper presents a class of passivity-based cooperative control problems that have an explicit connec-
tion to convex network optimization problems. The newnotion ofmaximal equilibrium independent pas-
sivity is introduced and it is shown that networks of systems possessing this property asymptotically ap-
proach the solutions of a dual pair of network optimization problems, namely an optimal potential and an
optimal flow problem. This connection leads to an interpretation of the dynamic variables, such as system
inputs and outputs, to variables in a network optimization framework, such as divergences and potentials,
and reveals that several duality relations known in convex network optimization theory translate directly
to passivity-based cooperative control problems. The presented results establish a strong and explicit con-
nection between passivity-based cooperative control theory on the one side and network optimization
theory on the other, and they provide a unifying framework for network analysis and optimal design. The
results are illustrated on a nonlinear traffic dynamicsmodel that is shown to be asymptotically clustering.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

One of themost profound concepts inmathematics is the notion
of duality. This concept manifests itself across many mathemati-
cal disciplines, but perhaps the most elegant and complete notion
of duality is the celebrated Lagrange duality in convex optimiza-
tion (Boyd & Vandenberghe, 2003). One of the most complete ex-
positions of this duality theory relates to a class of optimization
problems over networks, generally known as network optimization
(Rockafellar, 1998). In Rockafellar (1998), a unifying framework for
network optimization was established, with the key elements be-
ing a pair of dual optimization problems: the optimal flow problem
and the optimal potential problem.

The notion of duality also has a long history within the the-
ory of control systems, see e.g. Balakrishnan and Vandenberghe
(1995). A recent trend in modern control theory is the study of co-
operative control problems amongst groups of dynamical systems
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that interact over an information exchange network. A fundamen-
tal goal for the analysis of these systems is to reveal the interplay
between properties of the individual dynamic agents, the under-
lying network topology, and the interaction protocols that influ-
ence the functionality of the overall system (Mesbahi & Egerstedt,
2010). Amongst the numerous control theoretic approaches being
pursued to define a general theory for networks of dynamical sys-
tems, passivity takes an outstanding role; see e.g., Bai, Arcak, and
Wen (2011). The conceptual idea underlying passivity-based co-
operative control is to separate the network analysis and synthe-
sis into two layers. On the systems layer, each dynamical system
is designed to have a certain input–output behavior, namely pas-
sivity. Then, the complete network can be analyzed by considering
only the input–output behavior of the individual systems and the
network topology describing their interconnections. This concep-
tual idea was pursued in Arcak (2007), where group coordination
problems were investigated. Following this, passivity was used in
Zelazo and Mesbahi (2010) to derive performance bounds on the
input/output behavior of consensus-type networks. Passivity is
also widely used in coordinated control of robotic systems (Chopra
& Spong, 2006). The related concepts of incremental passivity
and relaxed co-coercivity have been used to study synchroniza-
tion problems in Scardovi, Arcak, and Sontag (2010) and Stan and
Sepulchre (2007). Passivity was also used in the context of Port-
Hamiltonian systems on graphs in Van der Schaft and Maschke
(2013), and it has been used to study clustering in networks with
saturated couplings (Bürger, Zelazo, & Allgöwer, 2011, 2012, 2013).
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In Hines, Arcak, and Packard (2011), a new definition of passiv-
ity was introduced that serves the needs of networked systems. In
particular, the notion of equilibrium independent passivity charac-
terizes dynamical systems that are passive with respect to an arbi-
trary equilibriumpoint. Equilibrium independent passivity enables
a convergence analysis of dynamical networks without comput-
ing the convergence point a priori. A similar passivity concept can
be found in Jayawardhana, Ortega, Gracia-Canseco, and Castanos
(2007).

The passivity-based cooperative control framework and the
network optimization framework have many modeling similari-
ties, as both rely on a certain matrix description of the underly-
ing network (i.e., the incidence matrix). However, to the best of
our knowledge, an explicit connection between these two research
areas has not yet been established, and this motivates the main
thesis of this work: Does the cooperative control framework inherit
any of the duality results found in network optimization?We present
in this paper a class of networks consisting of dynamical systems
with certain passivity properties that are intimately related to the
network optimization theory of Rockafellar (1998) and admit sim-
ilar duality interpretations. Our results build an analytic bridge
between cooperative control theory and network optimization
theory.

The contributions are as follows. Building upon Hines et al.
(2011), we introduce a refined version of equilibrium indepen-
dent passivity, named maximal equilibrium independent passivity.
The new definition is motivated by the fact that the original def-
inition excludes some important system classes, such as integra-
tors. Equipped with this new notion of passivity, we consider a
cooperative control framework involving maximal equilibrium in-
dependent passive systems that aim to reach output agreement.
First, necessary conditions for an output agreement solution to ex-
ist are derived. It is then shown that any steady-state configuration
is inverse optimal in the sense that the corresponding input solves
a certain optimal flow problem while the output solves the dual
optimal potential problem. Exploiting this connection, certain re-
sults on the existence and uniqueness of output agreement solu-
tions are derived. Following this, conditions on the couplings are
derived that ensure the output agreement steady state is realized.
The dynamic state and the output variable of the couplings are also
shown to be inverse optimal with respect to a dual pair of network
optimization problems. The inverse optimality and duality results
are then generalized to a broader class of networks of maximal
equilibrium independent passive systems. The general results are
used to analyze a nonlinear traffic dynamic model that is shown to
asymptotically exhibit a clustering behavior.

The remainder of the paper is organized as follows. The net-
work optimization framework of Rockafellar (1998) is reviewed in
Section 2. In Section 3 the dynamical networkmodel is introduced,
some results on passivity-based cooperative control are reviewed,
and the new notion of maximal equilibrium independent passivity
is introduced. The connection to network optimization theory in
form of inverse optimality conditions are established in Section 4.
The inverse optimality results are then generalized to networks of
maximal equilibrium independent passive systems in Section 5.
The theoretical results are illustrated on a nonlinear traffic dy-
namics model in Section 6. We offer some concluding remarks in
Section 7.
Preliminaries

A function φ : Rn
→ Rn is said to be strongly monotone on D if

there exists α > 0 such that (φ(η)− φ(ξ))⊤(η− ξ) ≥ α∥η− ξ∥2

for all η, ξ ∈ D , and co-coercive on D if there exists γ > 0 such
that (φ(η)− φ(ξ))⊤(η − ξ) ≥ γ ∥φ(η)− φ(ξ)∥2 for all η, ξ ∈ D ,
see, e.g., Zhu and Marcotte (1995). A function Φ : Rq

→ R is said
to be convex on a convex set D if for any two points η, ξ ∈ D and
for all λ ∈ [0, 1],Φ(λη+ (1− λ)ξ) ≤ λΦ(η)+ (1− λ)Φ(ξ). It is
said to be strictly convex if the inequality holds strictly and strongly
convex on D if there exists α > 0 such that for any two points
η, ξ ∈ D , with η ≠ ξ , and for all λ ∈ [0, 1],Φ(λη + (1 − λ)ξ) <
λΦ(η)+(1−λ)Φ(ξ)− 1

2λ(1−λ)α∥η−ξ∥2. The convex conjugate of
a convex functionΦ , denotedΦ⋆, is defined as (Rockafellar, 1997)

Φ⋆(ξ) = sup
η∈D

{η⊤ξ − Φ(η)} = − inf
η∈D

{Φ(η)− η⊤ξ}. (1)

The definition of a convex conjugate implies that for all η and ξ
it holds that Φ(η) + Φ⋆(ξ) ≥ η⊤ξ . A vector g is said to be a
subgradient of a functionΦ at η ifΦ(η′) ≥ Φ(η)+ g⊤(η′

−η). The
set of all subgradients of Φ at η is called the subdifferential of Φ at
η and is denoted by ∂Φ(η). The multivalued mapping ∂Φ : η →

∂Φ(η) is called the subdifferential of Φ , see Rockafellar (1997). A
special convex function we employ is the indicator function. Let C
be a closed, convex set, the indicator function is defined as

IC(η) =


0 if η ∈ C
+∞ if η ∉ C.

We will also use the indicator function for points, e.g., I0(η) as the
indicator function for C = {0}.

Given a control system ẋ = f (x, u) with state x ∈ Rp and
input u ∈ Rq and a function S(x) mapping Rp to R, the directional
derivative of S is denoted by Ṡ =

∂S
∂x f (x, u).

2. Network optimization theory

The objective of this paper is to study passivity-based coopera-
tive control in the context of network optimization theory (Rockafel-
lar, 1998). A network is described by a graph G = (V, E) consisting
of a finite set of nodes, V = {v1, . . . , v|V|}, and a finite set of edges,
E = {e1, . . . , e|E|}, describing the incidence relation between pairs
of nodes. Although we consider G in the cooperative control prob-
lem as an undirected graph, we assign to each edge an arbitrary ori-
entation. The notation ek = (vi, vj) ∈ E ⊂ V × V indicates that vi
is the initial node of edge ek and vj is the terminal node. For sim-
plicity, we will abbreviate this with k = (i, j), and write k ∈ E and
i, j ∈ V.

The incidence matrix E ∈ R|V|×|E| of the graph G with arbitrary
orientation, is a {0,±1}matrixwith the rows and columns indexed
by the nodes and edges of G such that [E]ik has value ‘+1’ if node
i is the head of edge k, ‘−1’ if it is the tail, and ‘0’ otherwise. This
definition implies that for any graph, 1⊤E = 0, where 1 ∈ R|V| is
the vector of all ones. We refer to the circulation space of G as the
null space N (E), and the differential space of G as the range space
R(E⊤); see Rockafellar (1998). Additionally, we call N (E⊤) the
agreement space. Note that N (E⊤) ⊥ R(E) and N (E) ⊥ R(E⊤).

We call a vector µ = [µ1, . . . ,µ|E|]
⊤

∈ R|E| a flow of the net-
work G. An element of this vector, µk, is the flux of the edge k ∈ E.
The incidencematrix can be used to describe a type of conservation
relationship between the flow of the network along the edges and
the net in-flow (or out-flow) at each node in the network, termed
the divergence of the network G. The net flux entering a node must
be equal to the net flux leaving the node. The divergence associated
with the flowµ is denoted by the vectoru = [u1, . . . , u|V|]

⊤
∈ R|V|

and can be represented as2

u + Eµ = 0. (2)

Borrowing from electrical circuit theory, we call the vector y ∈ R|V|

a potential of the network G. To any edge k = (i, j), one can asso-
ciate the potential difference as ζk = yj − yi; we also call this the
tension of the edge k. The tension vector ζ = [ζ1, . . . , ζ|E|]

⊤, can be

2 This condition is Kirchhoff’s Current Law.
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expressed as3

ζ = E⊤y. (3)

Flows and tensions are related to potentials and divergences by the
conversion formula µ⊤ζ = −y⊤u.

The optimal flow problem attempts to optimize the flow and
divergence in a network subject to the conservation constraint (2).
Each edge is assigned a flux cost C flux

k (µk), and each node is assigned
a divergence cost Cdiv

i (ui), i.e.,

min
u,µ

|V|
i=1

Cdiv
i (ui)+

|E|
k=1

C flux
k (µk)

s.t. u + Eµ = 0.

(4)

The problem (4) admits a dual problem with a very characteristic
structure.4 The objective functions of the dual problem turn out to
be the convex conjugates of the original cost functions, i.e.,

Cpot
i (yi) := Cdiv,⋆

i (yi) = − inf
ũi

{Cdiv
i (ũi)− yiũi}

and C ten
k (ζk) := C flux,⋆

k (ζk). In the dual, the linear constraint ζ =

E⊤y must hold, and the resulting problem is the optimal potential
problem

min
y,ζ

|V|
i=1

Cpot
i (yi)+

|E|
k=1

C ten
k (ζk),

s.t. ζ = E⊤y.

(5)

We provide in the sequel an interpretation of cooperative control
problems for a certain class of passive systems in the context of
these dual network optimization problems.

3. Passivity-based cooperative control

The basic model involving networks of passive dynamical sys-
tems with diffusive couplings is now introduced. A new notion of
passivity, called maximal equilibrium independent passivity, is pre-
sented and we demonstrate it to be a well-suited concept for co-
operative control.

3.1. A canonical dynamic network model

Networks of dynamical systems defined on an undirected graph
G = (V, E) are considered where each node represents a single-
input single-output (SISO) system,

Σi : ẋi(t) = fi(xi(t), ui(t),wi),
yi(t) = hi(xi(t), ui(t),wi), i ∈ V, (6)

with state xi(t) ∈ Rpi , input ui(t) ∈ R, output yi(t) ∈ R and
constant external signal wi. In the following, we adopt the notation
y(t) = [y1(t), . . . , y|V|(t)]⊤ and u(t) = [u1(t), . . . , u|V|(t)]⊤ for
the stacked output and input vectors. Similarly, we use x(t) ∈

R
|V|

i=1 pi for the stacked state vector,w for the external signals and
write ẋ = f (x, u,w), y = h(x, u,w) for the complete stacked
dynamical system. To each edge k ∈ E, connecting two nodes
i, j ∈ V, we associate the relative output ζk(t) = yi(t) − yj(t).
The relative outputs can be defined with the incidence matrix as

ζ(t) = E⊤y(t). (7)

3 This condition is Kirchoff’s Voltage Law.
4 To form the dual problem, one can replace the divergence ui and flow µk

variables in the objective functions with artificial variables ũi and µ̃k , respectively,
and introduce the artificial constraints ui = ũi,µk = µ̃k . These artificial constraints
can be dualized with Lagrange multipliers yi and ζk , respectively.
Fig. 1. Block-diagram of the canonical passivity-based cooperative control
structure.

The relative outputs ζ(t) drive dynamical systems placed on the
edges of G that are of the form

Πk : η̇k(t) = ζk(t),
µk(t) = ψk(ηk(t)), k ∈ E. (8)

To account for the diffusive structure of the coupling controller,
we rely throughout the paper on the standing assumption that
the initial conditions satisfy η(0) ∈ R(E⊤), which implies that
η(t) ∈ R(E⊤) for all times. The nonlinear functions ψk will be
specified later on. The systems (8) will in the following be called
controllers. The output of the controllers influence the incident
systems as

u(t) = −Eµ(t). (9)

The complete dynamical network (6)–(9) is illustrated in Fig. 1.

Remark 3.1. The model (6)–(9) includes the class of diffusively
coupled networks of the form

χ̈i = fi(χ̇i)+ wi +

j∈Ni

ψij(χj − χi),

where χi ∈ R, and Ni is the set of neighbors of node i in G. If the
nonlinear diffusive couplingsψij(χj −χi) are realized by odd func-
tions andψij = ψji, then the system can be represented in the form
(6)–(9), with xi = χ̇i.

Remark 3.2. The model (6)–(9) is closely related to Hamiltonian
systems on graphs (Van der Schaft &Maschke, 2013). Suppose there
exists a Hamiltonian function H : R|E|

× R|V|
→ R, then a port-

Hamiltonian system on a graph takes the form


η̇(t)
ẋ(t)


=


0 E⊤

−E −D

 ∂H∂η (η(t), x(t))∂H
∂x
(η(t), x(t))

 +


0
G


w. (10)

The matrix D is a positive semi-definite ‘‘damping’’ matrix. If D is
a diagonal matrix, and ∂H

∂η
(η(t), x(t)) and ∂H

∂x (η(t), x(t)) are solely
functions of η(t) and x(t), respectively, then the model is in the
form (6)–(9).

3.2. Passivity as a sufficient condition for convergence

A common theme in the existing literature is to exploit passivity
properties for a convergence analysis. The convergence results can
be traced back to well-known feedback theorems (Khalil, 2002),
and we review a basic convergence result here. From here on we
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use the notational convention that italic letters denote dynamic
variables, e.g., y(t), and letters in normal font denote constant
signals, e.g., y.

Assumption 3.3. There exist constant signals u, y,µ, ζ such that
u = −Eµ, ζ = E⊤y and

(i) each dynamic system (6) is output strictly passive with respect
to ui and yi, i.e., there exists a positive semi-definite storage
function Si(xi(t)) and a constant ρi > 0 such that

Ṡi ≤ −ρi∥yi(t)− yi∥2
+ (yi(t)− yi)(ui(t)− ui); (11)

(ii) each controller (8) is passive with respect to ζk and µk, i.e.,
there exists a positive semi-definite storage functionWk(ηk(t))
such that

Ẇk ≤ (µk(t)− µk)(ζk(t)− ζk).

Now, the basic convergence result follows directly.

Theorem 3.4 (Convergence of Passive Networks). Consider the
dynamical network (6)–(9) and suppose Assumption 3.3 holds, then
the output variables y(t) converge to a constant steady-state value y,
i.e., limt→∞ y(t) → y.

Proof. The passivity condition implies that

|V|
i=1

Ṡi ≤ −

|V|
i=1

ρi∥yi(t)− yi∥2
+ (y(t)− y)⊤(u(t)− u)

= −

|V|
i=1

ρi∥yi(t)− yi∥2
− (ζ(t)− ζ)⊤(µ(t)− µ)

≤ −

|V|
i=1

ρi∥yi(t)− yi∥2
−

|E|
k=1

Ẇk.

One can bring
|E|

k=1 Ẇk to the left of the inequality and invok-
ing Barbalat’s lemma (Khalil, 2002) to conclude convergence, i.e.,
limt→∞ ∥y(t)− y∥ → 0. �

The appeal of this convergence result is that it decouples the
dynamical systems layer and the network layer. Only the in-
put–output behaviormust be shown to be passive to conclude con-
vergence of the overall network.

3.3. Equilibrium independent passivity

A critical aspect of the previous result relates to the assumption
on the existence of the constant signals u, y,µ, ζ that satisfy
Assumption 3.3. The equilibrium configuration depends on the
properties of all systems in the network and the desired passivity
property cannot be verified locally. To overcome this issue, the
concept of equilibrium independent passivity was introduced in
Hines et al. (2011). Equilibrium independent passivity requires a
system tobepassive independent of the equilibriumpoint towhich
it is regulated.

Definition 3.5 (Hines et al., 2011). The system (6) is said to be
(output strictly) equilibrium independent passive if there exists a set
Ui ⊂ R and a continuous function kx,i(u), defined on Ui, such that
(i) for any constant signal ui ∈ Ui the constant signal xi = kx,i(ui)
is an equilibrium point of (6), i.e., 0 = fi(xi, ui,wi), and (ii) the
system is passive with respect to ui and yi = hi(kx,i(u), ui,wi);
that is, for each ui ∈ Ui there exists a storage function such that
the inequality (11) holds (with ρi ≥ 0 for equilibrium independent
passivity and ρi > 0 for output-strictly equilibrium independent
passivity).
The relevance of equilibrium independent passivity for the analysis
of dynamical networks can be readily seen. If the systems (6)
and (8) are output-strictly equilibrium independent passive and
equilibrium independent passive, respectively, one has to verify
only that an equilibrium trajectory exists in the respective sets to
make the basic convergence proof of Theorem 3.4 applicable. The
exact equilibrium point needs not be known.

One important implication of equilibrium independent passiv-
ity is that the equilibrium input–output map must be monotone,
and even co-coercive, if the system is output-strictly equilibrium
independent passive, see Hines et al. (2011).

3.4. Maximal equilibrium independent passivity

While equilibrium independent passivity turns out to be a
useful concept for network analysis, the given definition excludes
some important system classes. Consider for example a simple
integrator, i.e., ẋi(t) = ui(t), yi(t) = xi(t). It is well known that
the integrator is passive with respect to Ui = {0} and any output
value yi ∈ R.5 However, the equilibrium input–outputmap is not a
(single-valued) function such that the integrator is not equilibrium
independent passive as defined in Hines et al. (2011).

Motivated by this example, we propose here a refinement of
equilibrium independent passivity. In particular, we do not require
the equilibrium input–output maps ky,i to be functions, but instead
allow them to be relations (or curves in R2). That is, ky,i is the
set of all pairs (ui, yi) ∈ R2 that are equilibrium input–output
relations. The domain of the relation is the set Ui, i.e., dom ky,i :=

Ui. We will sometimes write ky,i(ui) to denote the set of all yi
such that (ui, yi) ∈ ky,i. This gives an interpretation of ky,i(ui) as
set-valued map. For the integrator example described above, the
equilibrium input–output relation is the vertical line through the
origin, i.e., ky,i = {(ui, yi) : ui = 0, yi ∈ R}. For relations in R2 we
review the concept ofmaximal monotonicity.

Definition 3.6 (Rockafellar, 1998). A relation ky,i is said to be max-
imal monotone if it cannot be embedded into a larger monotone
relation. Equivalently, the relation ky,i is a maximal monotone re-
lation if and only if
(i) for arbitrary (ui, yi) ∈ ky,i and (u′

i, y
′

i) ∈ ky,i one has ei-
ther ui ≤ u′

i and yi ≤ y′

i , denoted by (ui, yi) ≤ (u′

i, y
′

i), or
(ui, yi) ≥ (u′

i, y
′

i), and
(ii) for arbitrary (ui, yi) ∉ ky,i there exists (u′

i, y
′

i) ∈ ky,i such that
neither (ui, yi) ≤ (u′

i, y
′

i) nor (ui, yi) ≥ (u′

i, y
′

i).

We refer to Rockafellar (1998) for a detailed treatment of maximal
monotone relations. It is not difficult to see that the equilibrium
input–output relation of the integrator system discussed above is
maximal monotone. Based on this definition, a refined version of
equilibrium independent passivity can be introduced. Please note
that SISO systems are considered in this paper and the following
definition applies only to SISO systems.

Definition 3.7 (Maximal Equilibrium Independent Passivity). A dy-
namical SISO system (6) is said to bemaximal equilibrium indepen-
dent passive if there exists a maximal monotone relation ky,i ⊂ R2

such that for all (ui, yi) ∈ ky,i there exists a positive semi-definite
storage function Si(xi(t)) satisfying

Ṡi ≤ (yi(t)− yi)(ui(t)− ui). (12)

Furthermore, it is output-strictly maximal equilibrium independent
passive if additionally there is a constant ρi > 0 such that

Ṡi ≤ −ρi∥yi(t)− yi∥2
+ (yi(t)− yi)(ui(t)− ui). (13)

5 Passivity with respect to an arbitrary output yi ∈ R can be readily seenwith the
storage function Si(xi(t)) =

1
2 (xi(t)− yi)2 .
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The new notion of maximal equilibrium independent passivity is
closely related to the definition of Hines et al. (2011). In fact, any
equilibrium independent system with Ui = R is also maximal
equilibrium independent passive. This includes in particular affine
dynamical systems

ẋ(t) = Ax(t)+ Bu(t)+ Pw
y(t) = Cx(t)+ Du(t)+ Gw,

(14)

that were shown in Hines et al. (2011) to be output strictly equilib-
rium independent passive if they are output-strictly passive in the
classical sense for w = 0 and if A is invertible. The equilibrium in-
put–output relation is then the (single-valued) affine function (and
thus a maximal monotone relation) ky(u) =


−CA−1B + D


u +

−CA−1P + G

w. Note that this is the dc-gain of the linear system

plus the constant value determined by the exogenous inputs.
The two definitions also both include scalar nonlinear systems

of the form

ẋ(t) = −f (x(t))+ u(t), y(t) = x(t), (15)

with x(t) ∈ R, u(t) ∈ R, y(t) ∈ R, for which (x′(t) − x′′(t))
f (x′(t)) − f (x′′(t))


≥ γ (x′(t) − x′′(t))2 for all x′, x′′

∈ R and
some constant γ > 0.

However, the integrator is the central example of a system that
is included in the new definition of maximal equilibrium indepen-
dent passivity, but not in the original one of Hines et al. (2011).

In the following section, networks of the structure (6)–(9) con-
sisting of maximal equilibrium independent passive systems will
be considered. It will be shown that these networks admit a cer-
tain inverse optimality.

4. Output agreement analysis

We now investigate the steady-state behavior of the dynamical
network (6)–(9) and characterize an associated inverse optimality
for these systems. To prepare the following discussion, we intro-
duce some additional notation.Wewill write ky(u) for the stacked
input–output relations, that is y ∈ ky(u) means yi ∈ ky,i(ui) for
all i ∈ V. Similarly we will write U = U1 × · · · × U|V| and
Y = Y1 × · · · × Y|V| to indicate the domain and range of ky(u).

4.1. The plant level

The first observation we make is that a steady-state of the net-
work (6)–(9) requires all systems to be in output agreement. Sup-
pose that x and η are steady-state solutions of the network (6)–(9),
and let y be the corresponding steady-state output, then

y = β1,

for some β ∈ R, called the agreement value. Output agreement fol-
lows from the steady-state condition η̇ = 0, that requires y ∈

N (E⊤). As G is connected, y ∈ N (E⊤) is equivalent to y = β1
for some β .

The existence of an output agreement solution is related to the
network equilibrium feasibility problem:

Find u ∈ R(E), y ∈ N (E⊤)

s.t. y ∈ ky(u).
(16)

A necessary condition for the existence of an output agreement so-
lution is now the following.

Lemma 4.1 (Necessary Condition). If the network (6)–(9) has a
steady-state solution u, y, then this steady-state solves (16).

Proof. The steady-state condition for the plant and for the
controller require y ∈ ky(u) and y ∈ N (E⊤), respectively. Ad-
ditionally, the interconnection (9) implies that u(t) ∈ R(E), and
consequently that u ∈ R(E). �
To obtain further insights into the properties of an output agree-
ment solution, we will next establish a connection to network op-
timization problems and show that certain duality relations hold.
Therefore, some results relating maximal monotone relations and
convex functions are recalled from Rockafellar (1998). A first ob-
servation is that one can extend any maximal monotone relation
ky,i ⊂ R2 with domain Ui to a maximal monotone relation on R
by setting it to −∞ for all ui ‘left’ of Ui and +∞ for all ui ‘right’ of
Ui.6 Now, we recall the following result of Rockafellar (1997, Thm.
24.9):

Theorem 4.2 (Rockafellar, 1997). The subdifferential for the closed
proper convex functions on R are the maximal monotone relations
from R to R.

Thus, one can associate to any maximal monotone relation, and
consequently to any maximal equilibrium independent passive
system, a closed proper convex function Ki : R → R that is unique
up to an additive constant, such that

∂Ki(ui) = ky,i(ui) ∀ui ∈ Ui. (17)

If Ui is not the complete R and the maximal monotone relation
has been extended as described above, then Ki(ui) = +∞ for all
ui ∉ Ui. If the equilibrium input–output relation is a continuous
single-valued function from R to R then Ki(ui) is differentiable and
∇Ki(ui) = ky,i(ui).We will call Ki(ui) the cost function of the max-
imal equilibrium independent passive system i. Its convex conju-
gate, defined as in (1), i.e., K ⋆i (yi) = supui {yiui − Ki(ui)}, is called
the potential function of system i.

The steady states of the dynamical network of maximal equi-
librium independent passive systems are intimately related to the
following pair of dual network optimization problems.
Optimal flow problem: Consider the following optimal flow problem

min
u,µ

|V|
i=1

Ki(ui)

s.t. u + Eµ = 0.

(OFP1)

This problem is of the form of (4). The costs on the divergences
u ∈ R|V| are the integral functions of the equilibrium input–output
relations, i.e., Cdiv

i = Ki, and the flows µ ∈ R|E| on the edges are
not penalized, i.e., C flux

k = 0.
Optimal potential problem: Dual to the optimal flow problem, we
define the following optimal potential problem

min
yi

|V|
i=1

K ⋆i (yi),

s.t. E⊤y = 0.

(OPP1)

This problem is in the form (5). The convex conjugates of the in-
tegral functions of the equilibrium input-to-output maps are the
costs for the potential variables y ∈ R|V| of the nodes, i.e., Cpot

i =

K ⋆i . The constraint E⊤y = 0 enforces a balancing of the poten-
tials over the complete network. The problem can be written in
the standard form (5), by choosing C ten

k = I0, i.e., the indicator
function for the point zero. To simplify the presentation, we will
use the short-hand notation K(u) :=

|V|

i=1 Ki(ui) and K⋆(y) :=|V|

i=1 K
⋆
i (yi).

The main result of this paper is that the output agreement
steady-states in a network of maximal equilibrium independent
passive systems admit an inverse optimality.

6 Note that since ky,i is a maximal monotone relation, Ui is a connected interval
on R.
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Theorem 4.3 (Inverse Optimality of Output Agreement). Suppose all
node dynamics (6) are maximal equilibrium independent passive. If
the network (6)–(9) has a steady-state solution u, y, then (i) u is an
optimal solution to (OFP1), (ii) y is an optimal solution to (OPP1),
and (iii) in the steady-state (OFP1) and (OPP1) have the same value
with negative sign, i.e.,

|V|

i=1 Ki(ui)+
|V|

i=1 K
⋆
i (yi) = 0.

Proof. It is sufficient to show that the conclusions hold if the
equilibrium problem (16) has a solution. If there is a solution u, y
to (16), then u ∈ R(E) ∩ U, while y ∈ N (E⊤) ∪ Y. Thus,
both optimization problems have a feasible solution and are finite.
Consider now the Lagrangian function of (OFP1) with multiplier ỹ,
i.e.,

L(u,µ, ỹ) =

|V|
i=1

Ki(u)− ỹ⊤u + ỹ⊤Eµ.

For u to be a solution to (OFP1), it is necessary and sufficient that
ỹ ∈ ∂K (u) for the optimalmultiplier ỹ. Thus, since ∂K (u) = ky(u),
the multiplier satisfies ỹ ∈ ky(u).

To conclude that u is an optimal solution, it remains to show
that the steady-state equilibrium trajectory y is an optimal multi-
plier, i.e., y = ỹ. As y satisfies the equilibrium condition, it only re-
mains to show that ỹ = N (E⊤). Let s(ỹ) = infu,µ L(u,µ, ỹ). Now,
if ỹ ∉ N (E⊤) then s(ỹ) is unbounded below. For ỹ ∈ N (E⊤) it
follows that s(ỹ) = −K⋆(ỹ). Thus, the supremum problem is iden-
tical to (OPP1) with the negative objective function and both prob-
lems will have the same solution. Now, if the network equilibrium
problem has a solution, then there must exist u and y satisfying
the optimality conditions for the dual pair of optimization prob-
lems (OFP1) and (OPP1). Finally, as the steady-state solution is an
optimal to both problems (OFP1) and (OPP1), it must be a saddle-
point for the Lagrangian function, i.e., it must hold that

sup
y

inf
u,µ

L(u,µ, y) = inf
u,µ

sup
y

L(u,µ, y). (18)

Let now r(u,µ) = supy L(u,µ, y). It follows that r(u,µ) = K(u)
if u + Eµ = 0 and r(u,µ) = +∞ otherwise. Additionally, we
have already seen that s(y) = infu,µ L(u,µ, y) is s(y) = −K⋆(y)
if y ∈ N (E⊤) and s(y) = −∞ otherwise. For (18) to hold, the
optimal solution u ∈ R(E) and y ∈ N (E⊤) must be such that
K (u) + K ⋆(y) = 0. As shown before, the steady-states of the dy-
namic network are optimal solutions to (OFP1) and (OPP1) and
must therefore satisfy the previous equality. �

The connection between the agreement steady-state of the dynam-
ical network and the dual pair of network optimization problems
opens the way to use well-known tools form convex analysis for
investigating the properties of output agreement steady-states.

Corollary 4.4 (Existence). Suppose all node dynamics are maximal
equilibrium independent passive with Ui = R and Yi = R, then an
output agreement steady-state exists.

Proof. The dynamics of each node are assumed to be maximally
equilibrium independent passive. Therefore, one can associate
to each node the equilibrium input–output map ky,i, and from
Theorem 4.2 the closed proper convex functions Ki as well as the
dual pair of network optimization problems (OFP1) and (OPP1).
Since Ui = R and Yi = R, both optimization problems have
a finite feasible solution and strong duality holds. The optimal
primal–dual solution pair solves the equilibriumproblem (16), and
since ky,i is the equilibrium input–outputmap, it corresponds to an
output agreement steady state. �

Corollary 4.5 (Uniqueness). Assume the dynamical systems (6) are
maximal equilibrium independent passive with a nonempty Ui.
Furthermore, assume the equilibrium input–output functions ky,i are
strongly monotone and satisfy limℓ→∞ |ky,i(uℓ)| → ∞ whenever
u1, u2, . . . is a sequence in Ui converging to a boundary point of Ui.
Then there exists at most one pair (u, y) that can be a steady-state
solution.

Proof. From the assumptions follow that Ki(ui) are differentiable
and essentially smooth convex functions (see Rockafellar, 1997,
p. 251). Thus, (OFP1) can have at most one solution. If such a
solution exists, then the dual problem also has a solution. �

Corollary 4.6 (Agreement Value). Assume the same assumptions as
for Corollary 4.5 hold. If an output agreement steady state exists, the
agreement value β satisfies

|V|
i=1

k−1
y,i (β) = 0. (19)

Proof. It follows from Theorem 26.1 in Rockafellar (1997) that
∇K ⋆i (yi) = k−1

y,i (yi). Thus, after replacing y in (OPP1) with y = β1,
the optimality condition of (OPP1) corresponds exactly to (19). �

4.2. The control level

It remains to investigate when the controller dynamics (8) can
realize an output agreement steady state. In particular, in the
steady-state configuration, the controller (8) must generate a sig-
nal µ that corresponds to the desired control input. Suppose a so-
lution u to (16) is known, then the controller must be such that
the following static network equilibrium feasibility problem has a
solution:

Find η ∈ R(E⊤)

s.t. u = −Eψ(η).
(20)

Lemma 4.7 (Necessary and Sufficient Condition). The network
(6)–(9) has a steady-state solution if and only if there exists a solution
to (16) and (20).

Proof. If the equilibrium problems have a solution u, y, η, then
u, y,µ = ψ(η) and ζ = 0 are a steady-state solution to (6)–(9).
Any steady-state solution u, y,µ, ζ of (6)–(9) solves the two equi-
librium problems with µ = ψ(η). �

Please note that the two equilibrium problems (16) and (20) are
not independent. However, if (16) has a unique solution, (20) has
no influence on the solution of (16).

As the required steady-state input u is in general not known
for the controller design, it seems appropriate to design the con-
troller such that (20) is feasible for any u ∈ R(E). Again, it will
turn out that the feasibility of the network equilibrium problem
is intimately related to maximal monotonicity. In particular, we
show that (20) has a solution for all u ∈ R(E) if ψk are strongly
monotone functions.

Following this observation, we now assume that all ψk are
strongly monotone functions. Then, one can associate to each edge
k ∈ E a closed, proper strongly convex function Pk : R → R such
that

∇Pk(ηk) = ψk(ηk). (21)

Lemma 4.8. Suppose the functions ψk are strongly monotone, then
the controller dynamics (8) are maximal equilibrium independent
passive.

Proof. The equilibrium input set for the controller dynamics is
solely ζk = 0. However, the dynamics (8) is passive with respect to
the input ζk = 0 and any output µk ∈ R. To see this, consider the
storage function

Wk(ηk(t),ηk) = Pk(ηk(t))− Pk(ηk)− ∇Pk(ηk)(ηk(t)− ηk),
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where ηk is such that µk = ∇Pk(ηk). From strict convexity of
Pk follows directly that Wk is a positive definite function. Now,
maximal passivity follows immediately from

Ẇk = (∇Pk(ηk(t))− ∇Pk(ηk))ζk(t)
= (µk(t)− µk)(ζk(t)− ζk),

where we used that ζk = 0. �

It will be shown next that the strong monotonicity of ψk ensures
the existence of an output agreement steady-state solution and
that the steady-state solution has additional inverse optimality
properties. To see this, consider the following pair of dual network
optimization problems.
Optimal potential problem: Let some u = [u1, . . . , u|V|]

⊤
∈ R(E)

be given. Consider the following optimal potential problem

min
η,v

|E|
k=1

Pk(ηk)+

|V|
i=1

uivi,

s.t. η = E⊤v.

(OPP2)

By its structure, (OPP2) is an optimal potential problem as defined
in (5). The potential vector v is associated to the linear cost defined
by u, while the tension variables η are associated to the integral
functions of the coupling nonlinearities.
Optimal flow problem: The dual problem to (OPP2) is the following
optimal flow problem

min
µ

|E|
k=1

P⋆k (µk)

s.t. u + Eµ = 0,

(OFP2)

where P⋆k is the convex conjugates of Pk, and u ∈ R(E) is a given
constant vector. The problem is in compliance with the standard
form of optimal flow problems (4), as one can introduce artificial
divergence variables and add as a cost function the indicator
function for the point u.

Theorem 4.9 (Controller Realization). Suppose the dynamical net-
work nodes (6) are such that the necessary conditions of Theorem 4.3
are satisfied and the controller dynamics (8) are such that all ψk are
strongly monotone. Then the network (6)–(9) has an output agree-
ment steady-state solution. Furthermore, let η be the steady-state of
the controller in output agreement, then (i) η is an optimal solution
to (OPP2), (ii) µ = ψ(η) is an optimal solution to (OFP2), (iii) and|E|

k=1 P
⋆
k (µk)+

|E|
k=1 Pk(ηk) = µ⊤η.

Proof. To prove the first claim, it is sufficient to show that for any
u ∈ R(E) the equilibriumproblem (20) has a solutionη. At first we
note that ifψk are strongly monotone, then Pk are strongly convex
and are defined on R. Now, note that the cost function of (OPP2)
can be represented as a function of η only, since u⊤v = −µ⊤η, for
some µ satisfying u = −Eµ, and thus, (OPP2) can be equivalently
represented as the problem of minimizing a strongly convex cost
function with effective domain R|E| over a linear subspace. Thus,
(OPP2) has a unique solution η for all u ∈ R(E). To prove the
first claim, it remains to connect the solution of (OPP2) to the
equilibrium condition (20). Any solution η = E⊤v in (OPP2) must
satisfy the first-order optimality condition

E∇P(E⊤v)+ u = 0,

where we use the short-hand notation P =
|E|

k=1 Pk. Since ∇P =

ψ, the optimal solution η = E⊤v to (OPP2) solves explicitly the
equilibrium condition (20), proving the first claim.
Now, to prove the remaining statements of the theorem, we
consider the Lagrangian of (OPP2), i.e.,

L(v, η, µ̃) =

|E|
k=1

Pk(ηk)+

|V|
i=1

uivi + µ̃
⊤
(−η + E⊤v),

with multiplier µ̃. Define now the dual function as s(µ̃) =

infv,η L(v, η, µ̃). Clearly, s(µ̃) = −∞ if Eµ̃+u ≠ 0, and otherwise
s(µ̃) = −P⋆(µ̃). Thus, the dual problem sup s(µ̃) is equivalent
to (OFP2) and the dual solution µ̃ is in fact the optimal solution
to (OFP2). Together with the first order optimality condition this
implies that µ = µ̃ = ∇P(η) = ψ(η). The last statement, i.e., the
strong duality, follows since it must hold that

sup
µ̃

inf
v,η

L(v, η, µ̃) = inf
v,η

sup
µ̃

L(v, η, µ̃).

This implies that supµ̃ s(µ̃) must take the same optimal value as
(OPP2). The statement follows now since supµ̃ s(µ̃) has the same
value as (OFP2) with negative sign, and u⊤v = −µ⊤η, where µ is
the optimal solution to (OFP2). �

The two optimization problems provide, on the one hand, explicit
statements about the feasibility of the steady state independent of
the required u, and, on the other hand, additional duality relations.
The internal state of the controller (8), η(t), can be understood as
tensions, while the output of the controller,µ(t), can be understood
as the corresponding dual flows.

4.3. The closed-loop perspective

Having established conditions that ensure the existence and
the optimality properties of an output agreement steady-state
solution, it remains to prove convergence.

Theorem 4.10 (Output Agreement). Consider the dynamical net-
work (6)–(9) and suppose that the nodes (6) are all output-strictly
maximal equilibrium independent passive with Ui = R and Yi =

R and all coupling nonlinearities ψk are strongly monotone. Then
there exist u, y, η, and µ being optimal solutions to (OFP1), (OPP1),
(OPP2) and (OFP2), such that limt→∞ u(t) → u, limt→∞ y(t) →

y, limt→∞ η(t) → η, and limt→∞ µ(t) → µ. In particular,
the dynamical network converges to output agreement, i.e., limt→∞

y(t) → β1.

Proof. The assumptions ensure that the four network optimiza-
tion problems (OFP1), (OPP1), (OPP2) and (OFP2) have an optimal
solution. Thus, a steady-state solution exists. Output-strictly max-
imal equilibrium independent passivity of the node dynamics en-
sures that for all i ∈ V there exists a storage function Si such that
Ṡi ≤ −ρi∥yi(t)−yi∥2

+ (yi(t)−yi)(ui(t)−ui). Additionally, maxi-
mal equilibrium independent passivity of the controller dynamics
ensures that for all k ∈ E there exists a storage function Wk satis-
fying Ẇk ≤ (µk(t)− µk)(ζk(t)− ζk). Thus, the basic convergence
result of Theorem 3.4 applies directly, proving convergence of the
output trajectories, i.e., limt→∞ y(t) → y. Since y ∈ ky(u), it fol-
lows that u(t) must converge to u. The convergence of µ(t) and
ζ(t) to µ and ζ, respectively, follows immediately. �

We can summarize the results of this section as follows. All sig-
nals of the dynamical network (6)–(9) have static counterparts in
the network optimization theory framework. The static counter-
parts of the outputs y(t) are the solutions y of the optimal potential
problem (OPP1), while the corresponding dual variables, i.e., diver-
gence variables in (OFP1), u, are the static counterparts to the con-
trol inputs u(t). The controller state η(t) and the outputµ(t) have
the tension and flow variables of (OPP2) and (OFP2), respectively,
as their static counterparts. We visualize the connection between
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(a) Signals of the closed-loop dynamical system. (b) Variables of the network theoretic framework.

Fig. 2. The block diagram of the closed loop system (a) and the abstracted illustration of the network variables (b).
Table 1
Relation between variables involved in the dynamical system and their static counterparts.

Dynamic signal Network variable Relation Cost function Optimization problem

y(t) System output y Potential y = ky(u) K ⋆i (yi) (OPP1)
ζ(t) Relative output ζ Tension ζ = E⊤y I0(ζk) (OPP1)
u(t) System input u Divergence u = ky

−1(y) Ki(ui) (OFP1)
µ(t) Controller output µ Flow u + Eµ = 0 P⋆k (µk) (OFP2)
v(t) – v Potential η = E⊤v ukvk (OPP2)
η(t) Controller state η Tension µ = ψ(η) Pk(ηk) (OPP2)
the dynamic variables of the closed-loop system and the static net-
work variables in Fig. 2. A summary of all variables involved in the
output agreement problem together with their static counterparts
is provided in Table 1. For the sake of completeness, we include
also the dynamic variable v(t), which corresponds to the potential
variables v of (OPP2) and can be defined as η(t) = Ev(t).

5. A general dynamic network analysis framework

The full potential of the established duality framework can be
seen if more general networks of maximal equilibrium indepen-
dent passive systems are considered. We will generalize the pre-
vious results now for controllers (8) that are arbitrary maximal
equilibrium independent passive systems. In particular,we assume
now that the controllers (8) are replaced by dynamical systems of
the form
Πk : η̇k = φk(ηk, ζk)

µk = ψk(ηk, ζk), k ∈ E. (22)

Assumption 5.1. The controllers (22) aremaximal equilibrium in-
dependent passive with input set Zk, output set Mk, and maximal
monotone input–output relation γk ⊂ R2.

To each of the dynamics (22) one can associate now a closed,
proper, convex function Γk : R → R such that
∂Γk = γk . (23)
Now, the formalism developed in the previous section can be
generalized as the asymptotic behavior of the network (6), (7),
(22), (9) and can be related to the following pair of dual network
optimization problems.
Generalized optimal flow problem: Consider the following optimal
flow problem

min
u,µ

|V|
i=1

Ki(ui)+

|E|
k=1

Γ ⋆
k (µk)

s.t. u + Eµ = 0,

(GOFP)

where Γ ⋆
k denotes the convex conjugate of Γk. This is a generalized

version of (OFP1). Still the divergence u are associated to the
cost functions defined by the integral of the nodes input–output
relations. However, now the cost function Γ ⋆
k is associated to the

flow variables µk.
Generalized optimal potential problem:Dual to the generalized opti-
mal flowproblem,we also define the generalized optimal potential
problem as

min
y,ζ

|V|
i=1

K ⋆i (yi)+

|E|
k=1

Γk(ζk)

s.t. ζ = E⊤y.

(GOPP)

In contrast to (OPP1), this problem does not necessarily force the
potential differences, i.e., the tensions, to be zero, but penalizes
them with the general cost functions Γk.

The general network optimization problems (GOFP) and (GOPP)
are related to the asymptotic behavior of the network of maximal
equilibrium independent passive systems.

Theorem 5.2 (Generalized Network Convergence Theorem). Con-
sider the dynamical network (6), (7), (22) and (9). Assume all node
dynamics (6) are output strictly maximal equilibrium independent
passive and all controller dynamics (22) are maximal equilibrium
independent passive, and the two network optimization problems
(GOFP), (GOPP) have a feasible solution. Then there exists constant
vectors u,µ solving (GOFP), and y, ζ solving (GOPP), such that
limt→∞ u(t) → u, limt→∞ µ(t) → µ, limt→∞ y(t) → y, and
limt→∞ ζ(t) → ζ.

Proof. First, we show that if the two network optimization
problems have a feasible solution, this solution represents an
equilibrium for the dynamical network. Consider again the
Lagrangian function of (GOFP) with Lagrange multiplier ỹ, i.e.,

L(u,µ, ỹ) =

|V|
i=1

Ki(ui)+

|E|
k=1

Γ ⋆
k (µk)+ ỹ⊤

(−u − Eµ).

Define now ζ̃ = E⊤ỹ. If (GOFP) has an optimal solution, this
solution satisfies the optimality conditions

∂Ki(u)− ỹ ∈ 0, ∂0⋆(µ)− ζ̃ ∈ 0

u + Eµ = 0, ζ̃ = E⊤ỹ,
(24)
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where we use the notation 0⋆(µ) =
|E|

k=1 Γ
⋆
k (µk). Since 0(ζ) =|E|

k=1 Γk(ζk) is a closed convex function it follows from the
inversion of the subgradients (i.e., Rockafellar (1997, Thm. 23.5))
that ∂0⋆(µ) is equivalent to µ ∈ ∂0(ζ̃). Thus, if (GOFP) has an
optimal primal solution and dual solution, then these solutions
are an equilibrium configuration of the dynamical network. To
complete this part of the proof, it remains to show that ỹ and ζ̃

are optimal solutions to (GOPP). Define s(ỹ, ζ̃) = infu,µ L(u,µ, ỹ)
with ζ̃ = E⊤ỹ. Clearly, s(ỹ, ζ̃) = −

|V|

i=1 K
⋆
i (ỹk) −

|E|
k=1 Γ

⋆⋆
k (ζ̃k).

Since Γ ⋆⋆
k = Γk it can be readily seen that an optimal solution

to infỹ,ζ̃ s(ỹζ̃) is an optimal solution to (GOPP). Thus, optimal
solutions to (GOFP), (GOPP) are equilibrium configurations for the
network. By the same argument follows that all possible network
equilibrium configurations are solution to (GOFP), (GOPP).

It remains to prove convergence. Consider a network equilib-
rium configuration u, y,µ, and ζ. By assumption, the node dynam-
ics are output strictly maximal equilibrium independent passive
and since (GOFP), (GOPP) are feasible u ∈ U and y ∈ Y. All con-
trollers are maximal equilibrium independent passive and since
(GOFP), (GOPP) are feasible,µ ∈ M, and ζ ∈ Z. Convergence of the
trajectories follows now from the basic convergence result. �

6. Application: analysis of a traffic dynamics model

The potential of the proposed network optimization interpre-
tation is now illustrated on the analysis of a nonlinear traffic dy-
namics models. The considered model is an optimal velocity model,
as proposed in Bando, Hasebe, Nakayama, Shibata, and Sugiyama
(1995) and Helbing and Tilch (1998), with the following assump-
tions: (i) the drivers are heterogeneous and have different ‘‘pre-
ferred’’ velocities, (ii) the influence between cars is bi-directional,
and (iii) vehicles can overtake other vehicles. Each vehicle adjusts
its velocity vi according to

v̇i = κi[Vi(∆p)− vi], (25)

where κi > 0 is a constant and the adjustment Vi(∆p) depends on
the relative position to other vehicles, i.e.,∆p = pj − pi, as

Vi(∆p) = V 0
i + V 1

i


j∈N (i)

tanh(pj − pi). (26)

Here N (i) is used to denote the neighboring vehicles influencing
vehicle i. Throughout this examplewe assume that the set of neigh-
bors to a vehicle is not changing over time. The constants V 0

i > 0
are ‘‘preferred velocities’’ and V 1

i > 0 are ‘‘sensitivities’’ of the
drivers. In the following we assume V 0

i ≠ V 0
j (i.e., heterogeneity).

The model can be represented in the form (6), (7), (9), (22). The
node dynamics can be identified as

v̇i(t) = κi[−vi(t)+ V 0
i + V 1

i ui(t)], yi(t) = vi(t), (27)

with the velocity vi(t) being the node state. The input to each
vehicle computes as ui(t) :=


j∈N (i) tanh(pj(t) − pi(t)). The

relative velocities of neighboring vehicles are ζ(t) = E⊤y. Now,
since ṗi = vi, we can define the relative positions of neighboring
vehicles as ηk(t) = pj(t) − pi(t), where edge k connects nodes i
and j. In vector notation, the coupling can be represented as

η̇ = ζ, µ = tanh(η), (28)

and u = −Eµ, where tanh(·) is here the vector valued function.
The node dynamics are output strictly maximal equilibrium in-

dependent passive systems. The equilibrium input–output map is
the affine function ky,i(ui) = V 0

i + V 1
i ui and a corresponding stor-

age function is Si =
1

2κiV1
i
(vi(t) − vi)2, where vi is the desired
constant velocity. The objective functions associated to the node
dynamics are the quadratic functions

Ki(ui) =
V 1
i

2
u2
i + V 0

i ui and K ⋆i (yi) =
1

2V 1
i
(yi − V 0

i )
2. (29)

Next, we show that the controller dynamics (28) is maximal equi-
librium independent passive. Note that the output functions of (28)
are monotone but bounded. The dynamics (28) will only attain a
steady state for ζ = 0. However, if ζ ≠ 0, the outputs will not
grow unbounded, but will approach the saturation bounds of the
nonlinearity. Thus, each of the coupling dynamics has the equilib-
rium input–output relation

γk(ζk) =


+1 ζk > 0
(−1, 1) ζk = 0
−1 ζk < 0.

(30)

It can be easily verified that γk represents a maximal monotone
relation in R2. To prove now maximal equilibrium independent
passivity, we define the integral functions of the coupling non-
linearities, i.e., Pk(ηk) = ln cosh(ηk). Note that the functions Pk
are not strongly convex, as they asymptotically approach an affine
function. The function Pk, the coupling nonlinearity ψk(ηk) =

tanh(ηk), and the convex conjugate P⋆k (µk) are illustrated in Fig. 3.
The function Pk can now be used to prove maximal equilibrium in-
dependent passivity.

Proposition 6.1. Each of the dynamics (28) is maximal equilibrium
independent passive with equilibrium input–output relation (30).

Proof. For any ζk = 0 and any µk ∈ (−1, 1), there is a unique ηk
such that µk = tanh(ηk). The corresponding storage function

Wk(ηk(t)) = Pk(ηk(t))− Pk(ηk)− ∇Pk(ηk)(η(t)− ηk) (31)

is positive definite. It can be readily seen that Ẇ = (µk(t) −

µk)ζk(t) = (µk(t) − µk)(ζk(t) − ζk). Furthermore, if ζr ≠

0 we can define a sequence η1
k ,η

2
k, . . . that diverges to +∞ if

ζr > 0 and to −∞ if ζr < 0. To each ηℓk one can define the
positive definite function (31), named W ℓ

k (ηk). The sequence of
functionsW ℓ

k approaches a positive semi-definite function W̄k(ηk)

that satisfies ˙̄W k = (µk(t)−µk)ζk(t). Additionally, we note that if
ζk > 0 (ζk < 0) then (µk(t)−µk) ≤ 0 ((µk(t)−µk) ≥ 0) for allµk.
Thus, it holds that ζk(µk(t) − µk) ≤ 0. Based on this observation
we conclude ˙̄W k ≤ (µk(t)− µk)(ζk(t)− ζk). Thus, for each ζk and
µk ∈ γk(ζk), there exists a positive semi-definite storage function
that allows to conclude passivity. �

To complete the network theoretic interpretation of the traffic dy-
namics model, we define the integral function of the input–output
relation γk. The integral function of γk(ζk) is the absolute value of
ζk and its convex conjugate is the indicator function for the set
[−1, 1], i.e.,

Γk(ζk) = |ζk|, Γ ⋆
k (µk) = I[−1,1](µk).

Thus, for the traffic dynamics, the two network optimization prob-
lems (GOFP) and (GOPP) take a very characteristic structure. The
optimal flow problem (GOFP) is almost identical to (OFP1), except
that additionally constraints on the flow variables are imposed,
i.e., the flows are constrained as −1 ≤ µk ≤ 1. On the other hand,
the optimal potential problem (GOPP) has a quadratic cost function
for the potentials plus an additional absolute value of the potential
differences, that can be understood as an ℓ1-penalty.

Remark 6.2 (Network Clustering). The connection of the presented
results to the network clustering analysis presented in Bürger et al.
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(a) P⋆(µ). (b) µ = ∇P(η) (=: ψ(η)). (c) P(η).

Fig. 3. Relation between the flow cost function P⋆(µ), the coupling nonlinearity, here ψ(η) = ∇P(η) := tanh(η), and the coupling function integral P(η).
Fig. 4. Simulation results for a traffic dynamics model with 100 vehicles placed on a line graph. Left: Time trajectories of the velocities for normally distributed coefficients
with σ 0

= 2.5 and σ 1
= 1. Right: Asymptotic velocities predicted by the network optimization problems for σ 0

= 1 (blue, ‘�’), σ 0
= 2.5 (red, ‘o’), and σ 0

= 4 (green, ‘∆’).
(2011) can be explained on the traffic dynamics. In Bürger et al.
(2011) a saddle-point problem of the form

max
µk

min
yi

L(y,µ) :=

|V|
i=1

1
2V1

i
(yi − V 0

i )
2
+ µ⊤E⊤y

−1 ≤ µk ≤ 1

is proposed to analyze and predict an asymptotic clustering behav-
ior. Some straight forward manipulations reveal that the saddle-
point problem results in fact from the Lagrange dual of (GOPP)
for the traffic dynamics model. It has been shown in Bürger et al.
(2011) that the solutions to the saddle-point problem eventually
have a clustered structure.

We present a computational study with 100 vehicles placed on a
line graph in Fig. 4. The sensitivity parameter is κ = 0.6 for all
vehicles, while the parameters V 0

i and V 1
i are chosen as a common

nominal parameter (V 0
nom = 25m

s and V1 = 10m
s ) plus a random

component, i.e., V 0
i = V 0

nom + V 0
i,rand, chosen according to a zero

mean normal distribution with different standard deviations. In
Fig. 4 (left), the time-trajectories of the velocities vi are shownwith
the random coefficients V 0

i,rand, V
1
i,rand chosen from a distribution

with σ 0
= 2.5 and σ 1

= 1, respectively. Fig. 4 (right) shows
the asymptotic velocity distribution for different choices of the
standard deviation σ 0. While for σ 0

= 1 the traffic agrees on a
common velocity, already for σ 0

= 2.5 a clustering structure of
the network can be seen. The clustering structure becomes more
refined for σ 0

= 4. We have chosen for all studies σ 1
= 1.

The network optimization framework provides us with efficient
tools to analyze and predict the non-trivial asymptotic behavior,
without the need to simulate the system for different parameter
configurations.

7. Conclusions

We have established in this paper an intimate connection
between passivity-based cooperative control and the network
optimization theory of Rockafellar (1998). To obtain this con-
nection, we introduced the notion of maximal equilibrium inde-
pendent passivity as a variation of the equilibrium independent
passivity concept of Hines et al. (2011). It was shown that dynam-
ical networks involving maximal equilibrium independent passive
systems asymptotically approach the solutions of several network
optimization problems. For output agreement problems we have
shown that the output agreement steady state is optimal with re-
spect to an optimal flow and an optimal potential problem. This
connection provided also an interpretation of the system outputs
as potential variables, and of the system inputs as node diver-
gence. Similar inverse optimality and duality results are estab-
lished for general networks of maximal equilibrium independent
passive systems. The general theory was illustrated on a nonlin-
ear traffic dynamics model that shows asymptotically a clustering
behavior. We believe that this result contributes to a unified un-
derstanding of networked dynamical systems and opens the way
for further advanced analysis methods.
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